Multiple Quantifiers
 Lecture 11
 Section 3.3

Robb T. Koether
Hampden-Sydney College

Fri, Jan 31, 2014

(1) Multiple Quantifiers

(2) Examples

(3) Assignment

Outline

(9) Multiple Quantifiers

(2) Examples

(3) Assignment

Multiple Quantifiers

- Multiple universal statements
- $\forall x \in S, \forall y \in T, P(x, y)$
- $\forall y \in T, \forall x \in S, P(x, y)$
- The order does not matter.

Multiple existential statements

- $\exists x \in S, \exists y \in T, P(x, y)$
- $\exists y \in T, \exists x \in S, P(x, y)$
- The order does not matter.

Multiple Universal Quantifiers

- Let $S=\{a, b, c\}$ and $T=\{r, s, t\}$.
- Then

$$
\begin{aligned}
\forall x \in S, & \forall y \in T, P(x, y) \\
\equiv & \forall x \in S,[P(x, r) \wedge P(x, s) \wedge P(x, t)] \\
\equiv & {[P(a, r) \wedge P(a, s) \wedge P(a, t)] \wedge[P(b, r) \wedge P(b, s) \wedge P(b, t)] } \\
& \wedge[P(c, r) \wedge P(c, s) \wedge P(c, t)] \\
\equiv & {[P(a, r) \wedge P(b, r) \wedge P(c, r)] \wedge[P(a, s) \wedge P(b, s) \wedge P(c, s)] } \\
& \wedge[P(a, t) \wedge P(b, t) \wedge P(c, t)] \\
\equiv & \forall y \in T,[P(a, y) \wedge P(b, y) \wedge P(c, y)] \\
\equiv & \forall y \in T, \forall x \in S, P(x, y)
\end{aligned}
$$

Mixed Quantifiers

- Mixed universal and existential statements
- $\forall x \in S, \exists y \in T, P(x, y)$
- $\exists y \in T, \forall x \in S, P(x, y)$
- The order does matter.
- What is the difference?

Mixed Quantifiers

- Let $S=\{a, b, c\}$ and $T=\{r, s, t\}$.
- Then

$$
\begin{aligned}
\forall x \in S, \exists y \in & T, P(x, y) \\
\equiv & \forall x \in S,[P(x, r) \vee P(x, s) \vee P(x, t)] \\
\equiv & {[P(a, r) \vee P(a, s) \vee P(a, t)] \wedge[P(b, r) \vee P(b, s) \vee P(b, t)] } \\
& \wedge[P(c, r) \vee P(c, s) \vee P(c, t)] .
\end{aligned}
$$

and

$$
\exists y \in T, \forall x \in S, P(x, y)
$$

$$
\equiv \exists y \in T,[P(a, y) \wedge P(b, y) \wedge P(c, y)]
$$

$$
\equiv[P(a, r) \wedge P(b, r) \wedge P(c, r)] \vee[P(a, s) \wedge P(b, s) \wedge P(c, s)]
$$

$$
\vee[P(a, t) \wedge P(b, t) \wedge P(c, t)]
$$

Mixed Quantifiers

- Let $S=\{a, b, c\}$ and $T=\{r, s, t\}$.
- Then

$$
\begin{aligned}
& \forall x \in S, \exists y \in T, P(x, y) \\
& \equiv \forall x \in S,[P(x, r) \vee P(x, s) \vee P(x, t)] \\
& \equiv {[P(a, r) \vee P(a, s) \vee P(a, t)] \wedge[P(b, r) \vee P(b, s) \vee P(b, t)] } \\
& \wedge[P(c, r) \vee P(c, s) \vee P(c, t)] .
\end{aligned}
$$

and

$$
\exists y \in T, \forall x \in S, P(x, y)
$$

$$
\equiv \exists y \in T,[P(a, y) \wedge P(b, y) \wedge P(c, y)]
$$

$$
\equiv[P(a, r) \wedge P(b, r) \wedge P(c, r)] \vee[P(a, s) \wedge P(b, s) \wedge P(c, s)]
$$

$$
\vee[P(a, t) \wedge P(b, t) \wedge P(c, t)]
$$

Mixed Quantifiers

- The order matters because, in the first case, the choice of y depends on the value of x.
- In the second case, the choice of y does not depend on the value of x.

Outline

(1) Multiple Quantifiers

(2) Examples

(3) Assignment

Example

- What is the difference between the following two statements?

$$
\begin{aligned}
& \forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x+y=0 . \\
& \exists y \in \mathbb{R}, \forall x \in \mathbb{R}, x+y=0 .
\end{aligned}
$$

- Are both statements true?

Example

- Consider the following two statements?

$$
\begin{aligned}
& \forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x y=0 \\
& \exists y \in \mathbb{R}, \forall x \in \mathbb{R}, x y=0
\end{aligned}
$$

- Are both statements true?

Example

- Which of the following are true?

$$
\begin{aligned}
& \forall x \in \mathbb{R}, \forall y \in \mathbb{R}, \forall z \in \mathbb{R}, x(y+z)=0 . \\
& \exists x \in \mathbb{R}, \forall y \in \mathbb{R}, \forall z \in \mathbb{R}, x(y+z)=0 . \\
& \forall x \in \mathbb{R}, \exists y \in \mathbb{R}, \forall z \in \mathbb{R}, x(y+z)=0 . \\
& \forall x \in \mathbb{R}, \forall y \in \mathbb{R}, \exists z \in \mathbb{R}, x(y+z)=0 .
\end{aligned}
$$

- Write the negations of the ones that are false.

Example

- Consider the statements
$\forall m \in \mathbb{R}, \forall b \in \mathbb{R}$, the line $y=m x+b$ has an x-intercept.
$\forall m \in \mathbb{R}, \exists b \in \mathbb{R}$, the line $y=m x+b$ has an x-intercept.
$\exists m \in \mathbb{R}, \forall b \in \mathbb{R}$, the line $y=m x+b$ has an x-intercept.
$\exists m \in \mathbb{R}, \exists b \in \mathbb{R}$, the line $y=m x+b$ has an x-intercept.
- Which statements are true?
- How would you prove them?
- What are the negations of the false statements?

Example

- Suppose that a function $f(x)$ never gets but so large.
- Express that idea using quantifiers.
- Express its negation using quantifiers.

Example

- Suppose that we have two functions $f(x)$ and $g(x)$ such that no matter how large $f(x)$ gets, $g(x)$ at some point gets even larger.
- Express that idea using quantifiers.
- Express its negation using quantifiers.

Example

- Suppose that we have two functions $f(x)$ and $g(x)$ such that no matter how large $f(x)$ gets, $g(x)$ at some point gets even larger, and vice versa.
- Express that idea using quantifiers.
- Express its negation using quantifiers.

Outline

(1) Multiple Quantifiers

(2) Examples
(3) Assignment

Assignment

Assignment

- Read Section 3.3, pages 117-128.
- Exercises 3, 9, 10, 12, 18, 19, 21, 29, 30, $55-58$, page 129.

